Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Sci Adv ; 10(14): eadh5543, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38569031

RESUMO

Natural gas is the primary fuel used in U.S. residences, yet little is known about its consumption patterns and drivers. We use daily county-level gas consumption data to assess the spatial patterns of the relationships and the sensitivities of gas consumption to outdoor air temperature across U.S. households. We fitted linear-plus-plateau functions to daily gas consumption data in 1000 counties, and derived two key coefficients: the heating temperature threshold (Tcrit) and the gas consumption rate change per 1°C temperature drop (Slope). We identified the main predictors of Tcrit and Slope (like income, employment rate, and building type) using interpretable machine learning models built on census data. Finally, we estimated a potential 2.47 million MtCO2 annual emission reduction in U.S. residences by gas savings due to household insulation improvements and hypothetical behavioral change toward reduced consumption by adopting a 1°C lower Tcrit than the current value.

2.
BMC Genomics ; 25(1): 161, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331763

RESUMO

BACKGROUND: DNA N6-methyladenosine (6mA), as an important epigenetic modification, widely exists in bacterial genomes and participates in the regulation of toxicity, antibiotic resistance, and antioxidant. With the continuous development of sequencing technology, more 6mA sites have been identified in bacterial genomes, but few studies have focused on the distribution characteristics of 6mA at the whole-genome level and its association with gene expression and function. RESULTS: This study conducted an in-depth analysis of the 6mA in the genomes of two pathogenic bacteria, Aeromonas veronii and Helicobacter pylori. The results showed that the 6mA was widely distributed in both strains. In A. veronii, 6mA sites were enriched at 3' end of protein-coding genes, exhibiting a certain inhibitory effect on gene expression. Genes with low 6mA density were associated with cell motility. While in H. pylori, 6mA sites were enriched at 5' end of protein-coding genes, potentially enhancing gene expression. Genes with low 6mA density were closely related to defense mechanism. CONCLUSIONS: This study elucidated the distribution characteristics of 6mA in A. veronii and H. pylori, highlighting the effects of 6mA on gene expression and function. These findings provide valuable insights into the epigenetic regulation and functional characteristics of A. veronii and H. pylori.


Assuntos
Helicobacter pylori , Helicobacter pylori/genética , Epigênese Genética , Aeromonas veronii/genética , DNA/metabolismo , Adenosina/genética , Adenosina/metabolismo , Metilação de DNA
3.
J Gastroenterol Hepatol ; 39(5): 868-879, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38220146

RESUMO

BACKGROUND AND AIM: Patients with cholelithiasis (CL) or cholecystectomy (CE) would have more chances of getting colorectal adenoma (CRA) or cancer (CRC). We aimed to figure out the effects of gut microbiota and bile acid on colorectal neoplasm in CL and CE patients. METHODS: This was a retrospective observational study that recruited 514 volunteers, including 199 people with normal gallbladders (normal), 152 CL, and 163 CE patients. Discovery cohort was established to explore the difference in gut microbiota through 16S rRNA and metagenomics sequencing. Validation cohort aimed to verify the results through quantitative polymerase chain reaction (qPCR). RESULTS: Significant enrichment of Escherichia coli was found in patients with cholelithiasis or cholecystectomy both in the discovery cohort (16S rRNA sequencing, PNormal-CL = 0.013, PNormal-CE = 0.042; metagenomics sequencing, PNormal-CE = 0.026) and validation cohort (PNormal-CL < 0.0001, PNormal-CE < 0.0001). Pks+ E. coli was found enriched in CL and CE patients through qPCR (in discovery cohort: PNormal-CE = 0.018; in validation cohort: PNormal-CL < 0.0001, PNormal-CE < 0.0001). The differences in bile acid metabolism were found both through Tax4Fun analysis of 16S rRNA sequencing (Ko00120, primary bile acid biosynthesis, PNormal-CE = 0.014; Ko00121, secondary bile acid biosynthesis, PNormal-CE = 0.010) and through metagenomics sequencing (map 00121, PNormal-CE = 0.026). The elevation of serum total bile acid of CE patients was also found in validation cohort (PNormal-CE < 0.0001). The level of serum total bile acid was associated with the relative abundance of pks+ E. coli (r = 0.1895, P = 0.0012). CONCLUSIONS: E. coli, especially pks+ species, was enriched in CL and CE patients. Pks+ E. coli and bile acid metabolism were found associated with CRA and CRC in people after cholecystectomy.


Assuntos
Ácidos e Sais Biliares , Colecistectomia , Colelitíase , Neoplasias Colorretais , Escherichia coli , Humanos , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/sangue , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/etiologia , Estudos Retrospectivos , Masculino , Feminino , Pessoa de Meia-Idade , Colelitíase/microbiologia , Colelitíase/etiologia , Colelitíase/cirurgia , Microbioma Gastrointestinal , Adulto , Carcinogênese , RNA Ribossômico 16S/genética , Idoso
4.
Acta Biomater ; 174: 1-25, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38092250

RESUMO

Phototherapy, such as photothermal therapy (PTT) and photodynamic therapy (PDT), has been considered an elegant solution to eradicate tumors due to its minimal invasiveness and low systemic toxicity. Nevertheless, it is still challenging for phototherapy to achieve ideal outcomes and clinical translation due to its inherent drawbacks. Owing to the unique biological functions, diverse gases have attracted growing attention in combining with phototherapy to achieve super-additive therapeutic effects. Specifically, gases such as nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) have been proven to kill tumor cells by inducing mitochondrial damage in synergy with phototherapy. Additionally, several gases not only enhance the thermal damage in PTT and the reactive oxygen species (ROS) production in PDT but also improve the tumor accumulation of photoactive agents. The inflammatory responses triggered by hyperthermia in PTT are also suppressed by the combination of gases. Herein, we comprehensively review the latest studies on gas-synergized phototherapy for cancer therapy, including (1) synergistic mechanisms of combining gases with phototherapy; (2) design of nanoplatforms for gas-synergized phototherapy; (3) multimodal therapy based on gas-synergized phototherapy; (4) imaging-guided gas-synergized phototherapy. Finally, the current challenges and future opportunities of gas-synergized phototherapy for tumor treatment are discussed. STATEMENT OF SIGNIFICANCE: 1. The novelty and significance of the work with respect to the existing literature. (1) Strategies to design nanoplatforms for gas-synergized anti-tumor phototherapy have been summarized for the first time. Meanwhile, the integration of various imaging technologies and therapy modalities which endow these nanoplatforms with advanced theranostic capabilities has been summarized. (2) The mechanisms by which gases synergize with phototherapy to eradicate tumors are innovatively and comprehensively summarized. 2. The scientific impact and interest. This review elaborates current trends in gas-synergized anti-tumor phototherapy, with special emphases on synergistic anti-tumor mechanisms and rational design of therapeutic nanoplatforms to achieve this synergistic therapy. It aims to provide valuable guidance for researchers in this field.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Medicina de Precisão , Fototerapia/métodos , Gases/uso terapêutico , Neoplasias/patologia , Terapia Combinada , Nanopartículas/uso terapêutico , Linhagem Celular Tumoral
5.
Phytomedicine ; 123: 155236, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38016383

RESUMO

BACKGROUND: Amauroderma rugosum (Blume & T. Nees) Torrend (Ganodermataceae) is an edible mushroom with a wide range of medicinal values. Our previous publication demonstrated the therapeutic effects of the water extract of A. rugosum (WEA) against gastric ulcers. However, the protective effects of the ethanol extract of A. rugosum (EEA) on gastric mucosa and its major active constituents have not yet been elucidated. PURPOSE: This study aims to evaluate the gastroprotective effects and underlying mechanisms of EEA and its fat-soluble constituent, ergosterol, in acute gastric ulcers. STUDY DESIGN AND METHOD: SD rats were pre-treated with EEA (50, 100, and 200 mg/kg) or ergosterol (5, 10, and 20 mg/kg), and acute gastric ulcer models were constructed using ethanol, gastric mucus secretion inhibitor (indomethacin) or pyloric-ligation. The gastric ulcer area, histological structure alterations (H&E staining), and mucus secretion (AB-PAS staining) were recorded. Additionally, Q-PCR, western blotting, immunohistochemistry, ELISA, molecular docking, molecular dynamics simulations, MM-GBSA analysis, and surface plasmon resonance assay (SPR) were used to investigate the underlying mechanisms of the gastroprotective effect. RESULT: Compared with WEA, which primarily exerts its anti-ulcer effects by inhibiting inflammation, EEA containing fat-soluble molecules showed more potent gastroprotective effect through the promotion of gastric mucus secretion, as the anti-ulcer activity was partly blocked by indomethacin. Meanwhile, EEA exhibited anti-inflammatory effects by suppressing the production of IL-6, IL-1ß, TNF-α, and NO, thereby inhibiting the MAPK pathway. Significantly, ergosterol (20 mg/kg), the bioactive water-insoluble compound in EEA, exhibited a gastroprotective effect comparable to that of lansoprazole (30 mg/kg). The promotion of gastric mucus secretion contributed to the effects of ergosterol, as indomethacin can completely block it. The upregulations of COX1-PGE2 and C-fos, an activator protein 1 (AP-1) transcription factor, were observed after the ergosterol treatment. Ergosterol acted as an LXRß agonist via van der Waals binding and stabilizing the LXRß protein without compromising its flexibility, thereby inducing the upregulation of AP-1 and COX-1. CONCLUSION: EEA and its primary bioactive compound, ergosterol, exert anti-ulcer effects by promoting gastric mucus secretion through the LXRß/C-fos/COX-1/PGE2 pathway.


Assuntos
Antiulcerosos , Polyporaceae , Úlcera Gástrica , Ratos , Animais , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Etanol/farmacologia , Ratos Wistar , Dinoprostona/metabolismo , Simulação de Acoplamento Molecular , Fator de Transcrição AP-1/metabolismo , Ratos Sprague-Dawley , Indometacina/farmacologia , Muco , Extratos Vegetais/química , Mucosa Gástrica , Água , Antiulcerosos/farmacologia , Antiulcerosos/uso terapêutico
6.
Free Radic Biol Med ; 210: 130-145, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37984751

RESUMO

Acute pancreatitis (AP) is a non-infectious pancreatic enzyme-induced disorder, a life-threatening inflammatory condition that can cause multi-organ dysfunction, characterized by high morbidity and mortality. Several therapies have been employed to target this disorder; however, few happen to be effectively employable even in the early phase. PFKFB3(6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-3) is a critical regulator of glycolysis and is upregulated under inflammatory, mitogenic, and hypoxia conditions. Essential information on the targeting of the inflammatory pathway will present the termination of the disorder and recovery. Herein we investigated the protective function of KAN0438757, a potent inhibitor of PFKFB3, and its mechanism of impeding AP induced in mice. KAN0438757 was confirmed to activate the Nrf2/HO-1 inflammatory signaling pathways in response to caerulein induced acute pancreatitis (CAE-AP) and fatty acid ethyl ester induced severe acute pancreatitis (FAEE-SAP). Additionally, KAN0438757 alleviated the inflammatory process in infiltrated macrophage via the Nrf2/HO-1 inflammatory signaling pathway and demonstrated a significant effect on the growth of mice with induced AP. And more importantly, KAN0438757 displayed negligible toxicity in vivo. Taken together our data suggest KAN0438757 directly suppresses the inflammatory role of PFKFB3 and induces a protective role via the Nrf2/HO-1 pathway, which could prove as an excellent therapeutic platform for SAP amelioration.


Assuntos
Pancreatite , Camundongos , Animais , Pancreatite/induzido quimicamente , Pancreatite/tratamento farmacológico , Pancreatite/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Doença Aguda , Transdução de Sinais , Macrófagos/metabolismo
7.
Biomaterials ; 303: 122391, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37995457

RESUMO

Reactive oxygen species (ROS) play a crucial role in regulating the metabolism of tumor growth, metastasis, death and other biological processes. ROS-based nanodynamic therapies (NDTs) are becoming attractive due to non-invasive, low side effects and tumor-specific advantages. NDTs have rapidly developed into numerous branches, such as photodynamic therapy, chemodynamic therapy, sonodynamic therapy and so on. However, the complexity of the tumor microenvironment and the limitations of existing sensitizers have greatly restricted the therapeutic effects of NDTs, which heavily rely on ROS levels. To address the limitations of NDTs, various strategies have been developed to increase ROS yield, which is an urgent aspect for the positive development of NDTs. In this review, the nanodynamic potentiation strategies in terms of unique properties and universalities of NDTs are comprehensively outlined. We mainly summarize the current dilemmas faced by each NDT and the respective solutions. Meanwhile, the NDTs universalities-based potentiation strategies and NDTs-based combined treatments are elaborated. Finally, we conclude with a discussion of the key issues and challenges faced in the development and clinical transformation of NDTs.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Espécies Reativas de Oxigênio/metabolismo , Medicina de Precisão , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fotoquimioterapia/métodos , Terapia Combinada , Microambiente Tumoral , Linhagem Celular Tumoral
8.
J Am Chem Soc ; 145(51): 28085-28095, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38032206

RESUMO

The creation of full stereoisomers of an organic compound comprising multiple contiguous stereocenters with simultaneous control over both relative and absolute configurations remains a significant challenge in synthetic chemistry. Using a cooperative catalysis strategy, we established an N-heterocyclic carbene/nickel-catalyzed enantio- and diastereodivergent propargylation reaction to access 3,3'-disubstituted oxindoles, enabling the incorporation of internal alkyne functionality and the introduction of a single quaternary or vicinal quaternary/tertiary stereogenic center. By selecting the appropriate combination of catalyst chirality, all four potential stereoisomers of α-quaternary propargylated oxindoles were synthesized in a predictable and precise way with remarkable yields, diastereoselectivities, and enantioselectivities from identical starting materials. The synthetic utility of this method was demonstrated in the concise asymmetric total synthesis of (-)-debromoflustramine B and (-)-C(ß-Me)-debromoflustramine B.

9.
Front Microbiol ; 14: 1231978, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637109

RESUMO

Soil microorganisms play important roles in promoting soil ecosystem restoration, but much of the current research has been limited to changes in microbial community structure in general, and little is known regarding the soil physicochemical property and microbial community structure. In this study, four organic fertilizers were first prepared based on tea oil camellia shell (TOCS). Our findings indicate that the application of BOFvo increased both total pore volume and BET surface area of the rhizosphere soils, as well there was a remarkable enhancement in total organic matter (TOM), total nitrogen (TN), available nitrogen (AN), total phosphorus (TP), total potassium (TK), and available potassium (AK) contents of the rhizosphere soils. Meanwhile, in comparison to the CK and CF groups, the utilization of BOFvo led to a substantial increase in both average yield and fruiting rate per plant at maturity, as well resulted in a significant increase in TN and TP contents of tea oil camellia leaves. Furthermore, our findings suggest that the application of TOCS-based organic fertilizers significantly enhances the microbial diversity in the rhizosphere soils with Proteobacteria and Ascomycota being the dominant bacterial and fungal phyla, respectively, and Rhodanobacter and Fusarium being the dominant bacterial and fungal genus, respectively. Redundancy analysis (RDA) indicates that the physicochemical characteristics of TOCS-based organic fertilizers had a significant impact on the composition and distribution of microbial communities in the rhizosphere soils. This study will facilitate the promotion and application of TOCS-based organic fertilizers, thereby establishing a foundation for the reuse of tea oil camellia waste resources.

10.
J Hematol Oncol ; 16(1): 89, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37533128

RESUMO

RNA modification has recently become a significant process of gene regulation, and the methyltransferase-like (METTL) family of proteins plays a critical role in RNA modification, methylating various types of RNAs, including mRNA, tRNA, microRNA, rRNA, and mitochondrial RNAs. METTL proteins consist of a unique seven-beta-strand domain, which binds to the methyl donor SAM to catalyze methyl transfer. The most typical family member METTL3/METTL14 forms a methyltransferase complex involved in N6-methyladenosine (m6A) modification of RNA, regulating tumor proliferation, metastasis and invasion, immunotherapy resistance, and metabolic reprogramming of tumor cells. METTL1, METTL4, METTL5, and METTL16 have also been recently identified to have some regulatory ability in tumorigenesis, and the rest of the METTL family members rely on their methyltransferase activity for methylation of different nucleotides, proteins, and small molecules, which regulate translation and affect processes such as cell differentiation and development. Herein, we summarize the literature on METTLs in the last three years to elucidate their roles in human cancers and provide a theoretical basis for their future use as potential therapeutic targets.


Assuntos
MicroRNAs , Neoplasias , Humanos , Metiltransferases/genética , Adenosina/metabolismo , Metilação , MicroRNAs/metabolismo , Biologia , Neoplasias/tratamento farmacológico
11.
Photodiagnosis Photodyn Ther ; 43: 103737, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37549816

RESUMO

The intercellular tight junction inhibits tumor imaging efficiency of nanomaterials, and enhanced cellular drug delivery with efficient detection is an important tool for tumor diagnosis. Herein, we fabricate fluorescence gold nanoclusters (Au NCs) decorated gas vesicles (GV-Au) for ultrasound (US)-mediated enhanced cellular delivery and imaging, in which GVs are living cell derived protein bubbles. GV-Au is rod-shaped sack-like structure around 230 nm, and displays improved stability and fluorescence ability compared with free Au NCs. Flow cytometry assay confirms the intracellular localization of Au NCs and GV-Au with a respective 2.20-fold enhanced cellular uptake post US treatment. Confocal images reveal the efficient cellular uptake of GV-Au under US impact, indicating that GV-Au is suitable for cellular and in vivo fluorescence imaging. Our strategy provides a new idea for efficient fluorescence imaging by penetrating cell membranes at the presence of US treatment.


Assuntos
Nanopartículas Metálicas , Fotoquimioterapia , Ouro/química , Fármacos Fotossensibilizantes , Fotoquimioterapia/métodos , Fluorescência , Imagem Óptica , Nanopartículas Metálicas/química
12.
Materials (Basel) ; 16(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37297214

RESUMO

The corrosion behavior of alumina-forming austenitic (AFA) stainless steels with different Nb additions in a supercritical carbon dioxide environment at 500 °C, 600 °C, and 20 MPa was investigated. The steels with low Nb content were found to have a novel structure with a double oxide as an outer Cr2O3 oxide film and an inner Al2O3 oxide layer with discontinuous Fe-rich spinels on the outer surface and a transition layer consisting of Cr spinels and γ'-Ni3Al phases randomly distributed under the oxide layer. Oxidation resistance was improved by accelerating diffusion through refined grain boundaries after the addition of 0.6 wt.% Nb. However, the corrosion resistance decreased significantly at higher Nb content due to the formation of continuous thick outer Fe-rich nodules on the surface and an internal oxide zone, and Fe2(Mo, Nb) laves phases were also detected, which prevented the outward diffusion of Al ions and promoted the formation of cracks within the oxide layer, resulting in unfavorable effects on oxidation. After exposure at 500 °C, fewer spinels and thinner oxide scales were found. The specific mechanism was discussed.

13.
Cancer Med ; 12(16): 16756-16773, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37377377

RESUMO

INTRODUCTION: Tumor-associated bacteria and gut microbiota have gained significant attention in recent years due to their potential role in cancer development and therapeutic response. This review aims to discuss the contributions of intratumor bacteria outside the gastrointestinal tract, in addition to exploring the mechanisms, functions, and implications of these bacteria in cancer therapy. METHODS: We reviewed current literature on intratumor bacteria and their impact on tumorigenesis, progression, metastasis, drug resistance, and anti-tumor immune modulation. Additionally, we examined techniques used to detect intratumor bacteria, precautions necessary when handling low microbial biomass tumor samples, and the recent progress in bacterial manipulation for tumor treatment. RESULTS: Research indicates that each type of cancer uniquely interacts with its microbiome, and bacteria can be detected even in non-gastrointestinal tumors with low bacterial abundance. Intracellular bacteria have the potential to regulate tumor cells' biological behavior and contribute to critical aspects of tumor development. Furthermore, bacterial-based anti-tumor therapies have shown promising results in cancer treatment. CONCLUSIONS: Understanding the complex interactions between intratumor bacteria and tumor cells could lead to the development of more precise cancer treatment strategies. Further research into non-gastrointestinal tumor-associated bacteria is needed to identify new therapeutic approaches and expand our knowledge of the microbiota's role in cancer biology.


Assuntos
Microbiota , Neoplasias , Humanos , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/patologia , Neoplasias/terapia , Bactérias , Carcinogênese
14.
Int J Biol Macromol ; 242(Pt 2): 124886, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37207757

RESUMO

Multifunctional dressing materials are highly required to combat multidrug resistant bacteria in wound infections. Here an alginate-based aerogel dressing is reported that combines photothermal bactericidal activity, hemostatic property, and free radical scavenging for skin wound disinfection and accelerated wound healing. The aerogel dressing is facilely constructed by immersing a clean nail (Fe) in a mixed solution of sodium alginate (Alg) and tannic acid (TA), followed by freezing, solvent replacement, and air drying. The Alg matrix plays an essential role in modulating the continuous assembly process between TA and Fe to allow the homogenous distribution of TA-Fe metal-phenolic networks (MPN) in the resulting composite, without forming aggregates. The photothermally responsive Nail-TA/Alg aerogel dressing is successfully applied in a murine skin wound model infected with Methicillin-resistant Staphylococcus aureus (MRSA). This work provides a facile strategy to integrate MPN with the hydrogel/aerogel matrix through in situ chemistry, which is promising for developing multifunctional biomaterials and biomedicine.


Assuntos
Alginatos , Staphylococcus aureus Resistente à Meticilina , Camundongos , Animais , Alginatos/farmacologia , Alginatos/química , Ferro , Bactérias , Bandagens , Hidrogéis/farmacologia , Hidrogéis/química , Metais , Hemostasia , Antibacterianos/química
15.
Zhongguo Zhong Yao Za Zhi ; 48(6): 1455-1462, 2023 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-37005833

RESUMO

With Zang-Fu organs, meridians, Qi and blood, and body fluid as the physiological and pathological basis, traditional Chinese medicine(TCM) theory is guided by the holistic concept and characterized by syndrome differentiation. It has made significant contributions to human health maintenance and disease prevention. Modern TCM preparation is developed on the basis of inheriting and developing TCM preparations using modern science and technology under the guidance of TCM theory. At present, the incidence and mortality of common tumors are increasing. TCM has rich clinical experience in the treatment of tumors. However, in the current stage, some TCM preparations have a tendency to deviate from the guidance of TCM theory. With the modernization of TCM, it is worth considering how TCM theory guides modern TCM preparations. Taking tumor treatment as an example, this paper introduced the development of TCM nano-preparation under the influence of modern nanotechnology, summarized the research on the development of modern TCM nano-preparation from the aspects of TCM holistic concept, TCM treatment principles, and TCM theory application, and discussed the application prospect of TCM nano-preparation in overall therapy, drug pairing, carrier selection, and targeted substance selection under the guidance of TCM theory. This paper provides new references for further developing the combination of tradition and modernization of TCM nano-preparation.


Assuntos
Produtos Biológicos , Medicamentos de Ervas Chinesas , Neoplasias , Humanos , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/uso terapêutico , Nanotecnologia , Neoplasias/tratamento farmacológico
17.
Arch Microbiol ; 205(4): 157, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37004578

RESUMO

The arecanut palm is one of the most important industrial crops in tropical area around the world. The root rot of arecanut palm, which is caused by Cerrena unicolor, has led to heavy economic losses and restricted greatly the development of arecanut industry, especially in Hainan province of China. The common use of chemical agents has worsened the problems of the emergence of resistant pathogens and the pollution of agricultural environment. This study aims to screen and identify a more effective and environment friendly biocontrol method for the prevention and treatment of root rot of arecanut palm. The mycelium growth rate is investigated to select antagonistic bacteria from tropical crop rotation fields which show improved resistance against soil-borne pathogens, and the strain P42 is revealed with the strongest antagonistic effects (82.18%). Based on 16 s rDNA sequence analysis, the strain P42 is identified as Lysinibacillus boronitolerans. In vitro antimicrobial activity shows that the strain P42 exhibits broad-spectrum antagonistic activity against a wide variety of tropical agricultural fungal pathogens, including Cerrena unicolor, Magnaporthe oryzea, Botryodiplodia theobromae, Neoscytalidium dimidiatum, Thanatephorus cucumeris, Fusarium oxysporum, and Botrytis cinerea Per.. The antagonistic activity of the culture of P42 is tolerant to common proteases, longer storage time, and temperature range of 40-121 °C; and is significantly influenced by alkaline (7-9) and acidic (1-2) pH, as well as by ultraviolet ray treatment for more than 30 min. The investigation on the antagonistic activity of the crude extract of fermentation filtrate indicates that the active compounds might be lipopeptides, polyketones, or proteins. To our knowledge, this is the first report of L. boronitolerans as potential bio-reagents for controlling root rot of arecanut palm caused by Cerrena unicolor.


Assuntos
Bacillaceae , Polyporales , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Bacillaceae/genética
18.
Front Nutr ; 10: 1078963, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36860687

RESUMO

Background: Previous observational studies suggested inconsistent insights on the associations between meat intake and the risk of digestive tract cancers (DCTs). The causal effect of meat intake on DCTs is unclear. Methods: Two-sample Mendelian randomization (MR) was performed based on genome-wide association studies (GWAS) summary data from UK Biobank and FinnGen to evaluate the causal effect of meat intake [processed meat, red meat (pork, beef, and lamb), and white meat (poultry)] on DCTs (esophageal, stomach, liver, biliary tract, pancreatic, and colorectal cancers). The causal effects were estimated using a primary analysis that employed inverse-variance weighting (IVW) and complementary analysis that utilized MR-Egger weighted by the median. A sensitivity analysis was conducted using the Cochran Q statistic, a funnel plot, the MR-Egger intercept, and a leave-one-out approach. MR-PRESSO and Radial MR were performed to identify and remove outliers. To demonstrate direct causal effects, multivariable MR (MVMR) was applied. In addition, risk factors were introduced to explore potential mediators of the relationship between exposure and outcome. Results: The results of the univariable MR analysis indicated that genetically proxied processed meat intake was associated with an increased risk of colorectal cancer [IVW: odds ratio (OR) = 2.12, 95% confidence interval (CI) 1.07-4.19; P = 0.031]. The causal effect is consistent in MVMR (OR = 3.85, 95% CI 1.14-13.04; P = 0.030) after controlling for the influence of other types of exposure. The body mass index and total cholesterol did not mediate the causal effects described above. There was no evidence to support the causal effects of processed meat intake on other cancers, except for colorectal cancer. Similarly, there is no causal association between red meat, white meat intake, and DCTs. Conclusions: Our study reported that processed meat intake increases the risk of colorectal cancer rather than other DCTs. No causal relationship was observed between red and white meat intake and DCTs.

19.
Front Oncol ; 13: 1016232, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816943

RESUMO

Objective: A case of cervical tracheal granular cell tumor (CTGCT) is reported together with a discussion on the clinical manifestation, diagnosis, and treatment of CTGCT. Additional cases of tumors in the tracheal membrane are also discussed. A simple and viable tracheal reconstruction method was proposed. The research design involves a case report and literature review. Methods: Twenty-four case reports on cervical GCT with complete clinical data were identified, with a specific focus on cases involving surgical treatment of tumors in the cervical tracheal membrane. Results: Twenty-eight reports of GCT in the cervical trachea and six reports on cervical tracheal membrane tumors were identified. The clinical data of a middle-aged Asian woman with a cervical GCT was also discussed. Conclusion: Cervical GCT is a rare disease, and tracheal resection is a reasonable treatment for cervical tracheal GCT. The proposed procedure is a simple and feasible method for reconstruction of the cervical tracheal membrane defect using a double-pedicled banded myofascial flap.

20.
Nat Commun ; 14(1): 718, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759618

RESUMO

Inorganic polyphosphate (polyP) is an ancient energy metabolite and phosphate store that occurs ubiquitously in all organisms. The vacuolar transporter chaperone (VTC) complex integrates cytosolic polyP synthesis from ATP and polyP membrane translocation into the vacuolar lumen. In yeast and in other eukaryotes, polyP synthesis is regulated by inositol pyrophosphate (PP-InsP) nutrient messengers, directly sensed by the VTC complex. Here, we report the cryo-electron microscopy structure of signal-activated VTC complex at 3.0 Å resolution. Baker's yeast VTC subunits Vtc1, Vtc3, and Vtc4 assemble into a 3:1:1 complex. Fifteen trans-membrane helices form a novel membrane channel enabling the transport of newly synthesized polyP into the vacuolar lumen. PP-InsP binding orients the catalytic polymerase domain at the entrance of the trans-membrane channel, both activating the enzyme and coupling polyP synthesis and membrane translocation. Together with biochemical and cellular studies, our work provides mechanistic insights into the biogenesis of an ancient energy metabolite.


Assuntos
Polifosfatos , Saccharomyces cerevisiae , Polifosfatos/metabolismo , Microscopia Crioeletrônica , Saccharomyces cerevisiae/metabolismo , Citosol/metabolismo , Canais Iônicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA